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Abstract. We discuss how finite-time fluctuations of the chaoticity degree permit us to 
observe a family of equilibrium measures defined in the thermodynamical formalism for 
expanding one-dimensional maps and for axiom A systems. By means of generalised 
Lyapunov exponents one can thus calculate the Kolmogorov entropies, the Lyapunov 
exponents and the Hausdorff dimensions for this set of measures. We perform such a 
calculation for the Lozi map, an almost everywhere hyperbolic diffeomorphism of the 
plane. We stress the heuristic power of our approach, which can be extended to more 
generic non-hyperbolic systems. In this case we suggest that phase transition phenomena 
might appear as a consequence of the existence of 'laminar-like' regular periods during 
chaotic evolutions. 

Temporal intermittency is a typical feature of chaotic systems and is usually measured 
by means of the generalised Lyapunov exponents, L ( q ) ,  and of the Renyi entropies, 
Kq (see, e.g., Paladin and Vulpiani 1987 and references therein). It has recently been 
proposed to regard intermittency as a multifractal object in trajectory space (Eckmann 
and Procaccia 1986, Paladin er a1 1986, Szepfalusy and Tel 1987), by linking the Renyi 
entropies to the scaling of the probability distribution that rules the finite-time fluctu- 
ations of the chaoticity degree via a Legendre transformation. This approach is quite 
analogous to that used for characterising the singularity structure of a probability 
measure on strange attractors (Benzi et a1 1984, Halsey er al 1986). Our purpose is to 
make clear the connection of these approaches to the thermodynamic formalism by 
introducing a family of invariant ergodic measures which are observable on finite times 
even if, asymptotically, just one of them describes the global features of the system. 
It is thus possible to obtain the analogue of the partition function in the statistical 
mechanics formalism (Ruelle 1978, Walters 1978) by estimating the finite-time fluctu- 
ations. Actually, it is more convenient to reconstruct the probability distribution which 
rules them via a calculation of the moments of suitable observables. 

Let us consider the fluctuations of the chaoticity degree by introducing the finite-time 
Lyapunov exponents of a flow or of a map F ' (x )  according to whether t is a continuous 
variable or an integer: 

(1) 
where x belongs to the F-invariant set J c R d  and ID,F'(x)l is the norm of the 
tangent map of the transformation F' at x. It is clearly evident that a small error 6x 
in our knowledge of x grows exponentially as ISx( r) l  a 18x1 e'' where x( r )  = F'(x) .  

$ Present address: Diparfimento di Fisica, Universith 'La Sapienza', p le Moro 2, 1-00185 Roma, Italy. 
1 1  Laboratoires Propres du Centre National de la Recherche Scientifique. 
T Laboratoire associi h I'Ecole Normale Superieure et h I'Universitt de  Paris-Sud, 91405 Orsay Cedex, France. 

Y(X, t )  = ( l / t )  lnlQcF'(x)l 
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In order to measure a global chaoticity degree, one usually considers the maximum 
Lyapunov characteristic exponent, LCE: 

1 
A(p)  = lim - lnlD,F‘I d p ( x )  E lim ( y ( x ,  t ) ) ,  

7-- t I, 1-a3 

= lim y(x,  t )  for p negative for almost all x ( 2 )  

where p is an ergodic invariant measure and the compact set J is its support. In the 
following we shall assume that the dynamics individuates a ‘physical measure’ p to 
which all experimental measures refer. Now, y(x,  t )  fluctuates at varying x around 
its average value ( y ( x ,  f ) ) , ,  p negative almost everywhere, but for large enough times 
we can take ( y ( x ,  t ) ) ,  = A ( p )  for practical purposes. Indeed, typical corrections to the 
asymptotic limit A are O ( l / t )  (Bouchaud et a1 1988) and can be neglected with respect 
to the amplitude of the large fluctuations which are expected to be O( 1/ t 1’2) in most 
cases (Goldirsch et a1 1987). 

In order to reconstruct the scaling properties of the probability 9’( y )  of measuring 
a value of the finite-time LCE in the interval [ y ,  y+dy] ,  when the initial point x is 
chosen p negative almost everywhere, let us define the generalised Lyapunov exponents 
L( q )  which are asymptotic indices, quite easily computed in numerical calculations. 
They are the moments of a small perturbation on the trajectory of dynamical systems: 

(3) 

1-cC 

L(q) = lim ( l / t )  ln(lDxF‘lq)p = lim ( l / t )  In B ( y )  d y  exp(yqt). 
7-x 1 - 0 0  J 

We have to assume an exponential decay of 9 ’ ( y ) ,  i.e. 

9’h )  exp(-+(r) t )  (4) 
if we want to obtain a finite L ( q )  in (3). Note that 9 ’ ( y ) ,  L ( q )  and + ( y )  all refer to 
the natural measure p if there are no other explicit labels. A saddle-point estimate of 
(3) gives the Legendre transformation of the function + ( y ) :  

7 can vary in the interval [ ymin, ymdJ and ymin ( ymdx) is the minimum (maximum) y 
value selected by q + -a ( q  + CO), while for q+ 0 one sees that dL/dq = A. From 
general theorems of probability theory on the moments, one can show that L ( q )  is a 
convex function of q, i.e. y ( q )  is a non-decreasing function of q. In the limit of small 
q (dominated by the most probable fluctuations), one can stop the Taylor expansion 
of L( q )  at the second order: L( q )  = A q  + ( b / 2 ) q 2 .  This means that for values of y close 
to the Lyapunov exponent value the y distribution is well approximated by the normal 
distribution 

+(r) = ( r - ( r H 2 / 2 b .  ( 7 a )  

Such a distribution can be obtained by regarding the y fluctuations as a random process: 

Y ( X ,  t )  = ( Y ) p  + 5(x)t-”2 ( 7 6 )  
where 5 is a random variable of zero mean value and variance b. However, a 
second-order approximation for L( q )  is generally not satisfactory for q 3 1. 
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The main point of this paper is that a statistical mechanics approach can be achieved 
by numerical calculations of the generalised Lyapunov exponents. Our strategy is as 
follows. 

(i) We show that the maximum Lyapunov exponents A(pp), the Kolmogorov 
entropies h(p , )  and the Hausdorff dimensions H D ( ~ , )  related to the set of equilibrium 
measures {,up} of the function - p u  (x)  = - p  In/ D,FI with p E iw for uniformly expanding 
maps of the interval can be derived by the L(q) .  Most of our results can be extended 
to axiom A (Bowen 1973) attractors provided that ID,Fl is replaced by the restriction 
of the tangent map along the unstable direction?. Let us recall that axiom A systems 
are hyperbolic and so the finite-time maximum Lyapunov exponents cannot vanish, 
i.e. y ( x ,  t )  > 0 for t large enough and x E J, as well as in expanding maps. In these 
cases p, is the unique ergodic measure which realises the supremum in the variational 
principle (Walters 1975, Ruelle 1978, 1982) for the topological pressure P ( p ) :  

where M,(J)  is the set of the F-invariant measure on the F-invariant set J, h ( p )  is 
the Kolmogorov entropy of p and A ( p )  = 5 d p ( x ) u ( x )  (see, e.g., Eckmann and Ruelle 
1985). 

(ii) We explicitly give h(pp) ,  A(p,) and H D ( ~ , )  via a numerical calculation of 
the generalised Lyapunov exponents L( q )  in the Lozi map (see Collet and Levy (1984) 
for some rigorous results on this system) a two-dimensional quasihyperbolic 
diff eomorphism. 

(ii i)  We discuss how a phase transition bumps in the entropy at a certain critical 
value of p )  can appear in dynamical systems which are not axiom A as a consequence 
of the existence of regular 'laminar-like' periods during chaotic evolution. 

To obtain (i)  we need to use the key relation which links the topological pressure 
to the generalised Lyapunov exponents L, (4) obtained by an ensemble average taken 
over p, (Bessis eta1 1988): 

L, (4) = lim 1-m (1/ t )  ln(lD,F'lq)W, = P( p - q )  - P ( p ) .  (9) 

One can show (Walters 1978) as a particular case that 

hp"h(pp)=-dP/dp .  

By comparing (10) and (9) with (6), one has a direct interpretation of the derivative 
of the generalised Lyapunov exponent: 

This relation makes it evident that knowledge of finite-time fluctuations via generalised 
Lyapunov exponents with respect to only one equilibrium measure is fully equivalent 
to knowledge of the LCE computed with respect to all the equilibrium measures { p p } .  
Formulae (9)-(11) can be rigorously proven for a uniformly expanding map of the 

t In contrast to uniformly expanding maps of the interval, for two-dimensional axiom A maps, one has to 
consider a finite-time 'energy density' U, = - ( l / t )  In/D,F'l and then to extrapolate the thermodynamic limit 
of the 'energy' function U, = j  u , ( x )  d p ( x ) .  This is often simple since the corrections are of the form 
U, = U-+ C / t  in most systems. 
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interval. However they remain valid for the Baker transformation and they are conjec- 
tured to hold with respect to the Bowen-Ruelle-Sinai measure for which p = 1 and 
P(l) = 0 in the case of two-dimensional axiom A attractors when the pressure is 
computed along the unstable direction. We now extend this conjecture to all the 
equilibrium measures {pp }  with P E [W. 

We thus see that the Legendre transformation (5) and the variational principle (8) 
imply that the probability of finding a finite-time fluctuation y(x, t )  is related to the 
Kolmogorov entropy of a particular equilibrium measure: 

A b p - q ) = P Y p  -cCl(Yp)+P(P)  (12) 

where 4 ( y p )  and yp are related to Lp(q) by ( 5 )  and (11). 
Now we go into a little more detail about the statistical properties of the probability 

function P( y )  but, to do this, we must introduce some technical definitions. First, we 
relate the following considerations to uniformly hyperbolic one-dimensional systems, 
but the same considerations can be extended to axiom A attractors considering the 
dynamics 'projected' along the unstable directions as we have already pointed out. It 
is well known that, for the expanding systems we are considering, there is a finite 
partition of the invariant set J into sufficiently small closed sets, called cylinders or 
rectangles, such that the partition F - ' d  is a refinement of F - ' + ' d  and diam F'd + 0 
when t + -cc (the Markov partition). Following Bohr and Rand (1987) we introduce 
the cardinality N,( y )  of the set R, of rectangles belonging to F - ' d  so that the finite-time 
Lyapunov exponent y, starting from some point in R,,  belongs to the interval I =  
[r, r + d y ] .  Roughly speaking, N , ( r )  is the number of trajectories with a finite-time 
LCE 7. For large t, N , ( y )  scales as (Bohr and Rand 1987) 

N r ( y ) a e x p ( S ( y ) t ) *  (13) 

S (  y )  is here the topological entropy (Bowen 1973) of the set of points for which y(x, t )  
converges to 7. It follows that S (  y )  S Atop where 

hop= SUP h ( P )  = h(Pp=o)  = P(0) (14) 
P E M F ( J )  

is the topological entropy of the invariant set J. It is indeed simple to establish a 
relation between S ( y )  and + ( y )  defined by (3). Let us in fact recall that P(yp)  is the 
probability of finding y(x, t )  in the interval I = [ yp ,  Yp + d y ]  when the initial point is 
chosen pp negative almost everywhere. We thus get 

Y ( Y p )  = pp(Rr) (15) 

where the set R,, which gives the 'good' finite-time LCE, is weighted by the measure pp. 
Now, if A: is an element of R, E F - ' d ,  by applying the theory of Walters (1978) 

for the Perron-Frobenius operator it is possible to show (Vaienti 1988) that 

pp (A:  a exp[ f ( E - P(P )) I  I DxF' I-' 
where x is any point in A& and E is an arbitrary positive constant independent of x 
and t. Choosing x, for each A&,  in the set of points which gives y(x, t )  E I and sending 
E + 0, we finally have 

( r p  1 = ~p (Rt ) = Nr ( Y p  1 e x ~ [ - t ( P ( P  ) + P Y p  ) 1 
and comparison with (16) and (15) gives the relation 

cCl( 7 p  1 = P r p  - S (  r p  1 + P(P 1. 
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Let us emphasise the thermodynamical analogy. If we identify 7, with the energy, 
S (  7,) with the microcanonical entropy and - P ( p ) / p  with the free energy, the probabil- 
ity of finding an energy per particle 7, different from the average value A, in a system 
with N particles decays as exp(-N$(y,)). One sees that S ( 7 , )  does not depend on 
the particular equilibrium measure chosen, but the parametrisation 7, ( q )  depends on 
it, via (11). Moreover, from ( lo) ,  it is easy to obtain 

S ( Y p ( q ) )  = h ( p p q )  (17) 

S(A,) = h b , )  (18) 

where 7, (4) = dL,/dq. In the limit q + 0, it becomes 

which has been derived by Bohr and Rand (1987). Equation (18) is trivial to understand 
by physical intuition since it corresponds to the existence of a ‘thermodynamic limit’ 
for y (x ,  t ) ,  with respect to the measure p, as stated by the‘oseledec theorem (Oseledec 
1968). Indeed, one sees that (18) is equivalent to assuming $(A,) = O  in (16) so that 
the probability of finding y ( x ,  t )  = A, does not vanish when t + 00. 

On the contrary, (17)  has an ‘experimental’ relevance. In fact for axiom A attractors 
the physical measure on the attractor is smooth along the unstable manifold (the 
Sinai-Bowen-Ruelle measure) so that we get the topological pressure function as 
P ( x )  = L(q  = 1 - x )  since P (  1) = 0 by extending the Bowen-Ruelle relation (McCluskey 
and Manning 1983). It follows that Lyapunov exponents and Kolmogorov entropies 
related to averages taken over the uncountable set of equilibrium measures pp are in 
terms of L(q) :  

In figure 1 we show 7 ( q )  and $(7)  and in figure 2 the corresponding h(p,)  and A(pp) 
as a function of p for the Lozi map. Note that A(p,) is a non-increasing function of 
p since L ( q )  is a convex function, while h(p , )  increases for negative p and decreases 
for positive p ;  its maximum value is the topological entropy h,,, = L( l ) ,  corresponding 
to the so-called maximum entropy measure selected by p = 0. 

It is worth stressing that for two-dimensional axiom A attractors we can also 
compute the Hausdorff dimensions H D ( ~ , )  of the measures pp (often called informa- 
tion dimensions) by the relation (Young 1982) 

where X -  denotes the smallest Lyapunov exponent. For maps with constant Jacobian 
j ,  where x- = In j - A, (20) can be written as 

where p ( q )  and $( 7 ( q ) )  are given by (6) and ( 5 )  respectively. For the physical measure 
(i.e. for q + O )  (20) reduces to the Kaplan and Yorke formula (Kaplan and Yorke 
1978). Roughly speaking, H D ( ~ )  is the Hausdorff dimension of the smallest subset of 
the attractor of full p measure. It can be proved (McCluskey and Manning 1983) that 
generically there are no equilibrium measures for which H D ( ~ )  = d H ,  the Hausdorff 
dimension of the attractors and supcr H D ( ~ )  < d H .  
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0.050 c 

t -0.025 

Ip 0 05 - 1  3 

-0.05 0 0.05 
K - A  

Figure 1. ( a )  ? - A  against q for the Lozi map x,,+, = alx , /+y , ,  + 1, y,,, = bx,,  with a = 1.7 
and b = O S ;  A =0.470. The points are obtained by a numerical calculation of L(q) via 
formula ( 6 ) .  ( b )  I)( y) against y - A for the Lozi map. Points are obtained by the Legendre 
transformation ( 5 )  of the generalised Lyapunov exponents. The full curve indicates the 
normal approximation ( 7 a ) .  

- 2 - 1  0 1 2  3 
P 

Figure 2. h ( p L p )  (broken curve) and A ( p p )  (full curve) against p for the Lozi map from 
the numerical results shown in figure 1. 
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Figure 3 shows H D ( ~ ~ )  computed by (21) in the Lozi map. The maximum of 
H D ( ~ ~ )  seems to be reached by p values close to 1, and is smaller than the Hausdorfi 
dimension of the attractor, estimated to be d ,  = 1.415 * 0.005. 

The heuristic power of our approach is evident. It makes clear in what sense the 
equilibrium measures are observable in the set of the invariant ergodic measures. 
Moreover one can try to extend it to more generic systems which are not of the axiom 
A type. Let us consider as a prototype a simple two-dimensional non-hyperbolic map, 
the Henon map. In this case the condition ymln > 0 does not hold in a set of ‘turn 
back’ points (homoclinic tangencies) where the orbit becomes marginally stable (Gun- 
aratne and Procaccia 1987). This suggests that for negative q < qc ,  which pick up low 
‘temperatures’ p-’  via (19), an ordered phase can appear corresponding to the possibil- 
ity of finding the system in a laminar regular state characterised by a finite-time LCE 

T ( q )  which is non-positive. It is an open question what are the probability measures 
which support such non-positive LCE, since they cannot be indecomposable, i.e. ergodic. 
One can conjecture that the laminar regions tested by negative q are equivalent to the 
different pure phases of spin systems below a transition temperature. A first-order 
phase transition should appear as an edge in the pressure at pc = 1 - qc and so in the 
function L( q ) .  Unfortunately this is rather difficult to detect by a numerical calculation 
of L( q ) .  However, Procaccia and co-workers (Gunaratne and Procaccia 1987, Jensen 
1988) provided evidence of a jump of an entropy-like function, the so-called f ( a )  
spectrum (Halsey et a1 1986), in the Henon map due to the existence of the set of 
non-hyperbolic ‘turnback’ points. 

Let us finally remark that in most papers the finite-time fluctuations of the Kol- 
mogorov entropy are considered instead of those of the LCE. In this case, one measures 
the Renyi entropies Kq (see, e.g., Eckmann and Ruelle 1985, Paladin and Vulpiani 
1987) where K 1  = h ( p )  and K O =  htop. A Legendre transformation, quite analogous to 
(5), relates the set of Kq to a function corresponding to S (  y )  (Eckmann and Procaccia 
1986, Paladin et a1 1986, Szepafalusy and Tel 1987). 

”30 t 
- 1 0 1 2 3  

P 
Figure 3. H D ( ~ ~ )  against p obtained by (21) for the Lozi map. The horizontal full line 
indicates the value of the Hausdorff dimension of the attractor; the information dimension 
of the physical measure is H D ( ~ ~ , , )  = 1.404. 
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The link with the variational principle is, however, less transparent since for 
expanding maps of the interval one has the more involved relation (Bessis et a1 1988): 

( 9  - l)K,(Pup) = qP(P)  - P ( P q ) .  

KIF, = P ( l - q ) / q  = L ( q ) / q  

(22) 

(23) 
for hyperbolic maps of the plane and so the equivalence of the two different sets of 
exponents. Equation (23) can be also extended to higher-dimensional systems (Paladin 
and Vulpiani 1986). 

Let us conclude by the reasonable suggestion that our arguments are ‘generic’ in 
the sense that, for non-hyperbolic maps of the plane, (21) as well as most of our results 
remain valid for q values less than the critical q value corresponding to the phase 
transition in the topological pressure (Grassberger et a1 1988). 

Nevertheless, for the physical measure, i.e. for /3 = 1, (22) and (9) imply 
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